Properties:
E(X∣Y)E(X|Y)E(X∣Y)is the conditional expectation of XXXgiven YYY
E(X∣Y=y)E(X|Y=y)E(X∣Y=y)is a fixed value, but E(X∣Y)E(X|Y)E(X∣Y)is a random variable (it is a function of YYY)
Iterated expectation: E(E(X∣Y))=E(X)E(E(X|Y)) = E(X)E(E(X∣Y))=E(X)
Additivity: E(Y+Z∣X)=E(Y∣X)+E(Z∣X)E(Y+Z | X) = E(Y|X) + E(Z|X)E(Y+Z∣X)=E(Y∣X)+E(Z∣X)
does not work on the right hand side: E(Y∣X+Z)≠E(Y∣X)+E(Y∣Z)E(Y | X+Z) \ne E(Y|X) + E(Y|Z)E(Y∣X+Z)=E(Y∣X)+E(Y∣Z)
Linearity: E(aX+b∣Y)=aE(X∣Y)+bE(aX + b | Y) = aE(X|Y) + bE(aX+b∣Y)=aE(X∣Y)+b
Conditioning on the same variable: E(g(S)T∣S)=g(S)E(T∣S)E(g(S)T | S) = g(S)E(T|S)E(g(S)T∣S)=g(S)E(T∣S)
If Var(Y)Var(Y)Var(Y)is difficult to find directly, we can use the variance decomposition to condition the variance on another variable.
Last updated 5 years ago